



# PROFIL ENVIRONNEMENTAL PRODUIT

Vérification indépendante de la déclaration et des données conforme à la norme ISO 14025 : 2006

# LEDVANCE TRUSYS UNIVERSAL (DALI)

# Produit de référence : TRUSYS UNIV P 75W 840 W CL DALI



| N° d'enregistrement                                              | LEDV-00033-V01.01-FR              | Règles de rédac-<br>tion | PEP-PCR-ED4-EN-2021 09<br>06    |
|------------------------------------------------------------------|-----------------------------------|--------------------------|---------------------------------|
| N° d'habilitation du vérifica-<br>teur                           | VH08                              | Complété par             | PSR-0014-ED2.0-EN-2023<br>07 13 |
| Date d'édition                                                   | 11-2024                           | Durée de validité        | 5 ans                           |
| PEP préparé par                                                  | LEDVANCE GmbH                     |                          |                                 |
| Vérification indépendante de la dé                               | clarations et des données utilise | es selon la norme ISO    | 14025:2006                      |
| Vérification interne                                             |                                   | Vérification externe     | Х                               |
| Revue critique du PCR conduite p main)                           | ar un panel d'experts présidé pa  | ar Julie Orgelet (DDe-   |                                 |
| Les PEP sont conformes à la norr                                 | ne XP C08-100-1:2016 ou EN 5      | 0693:2019                | PEP                             |
| Les éléments du PEP ne peuvent programme                         | être comparés avec les élémen     | ts issus d'un autre      | PASS<br>PORT                    |
| Document conforme à la norme IS nementales. Déclarations environ |                                   | déclarations environ-    |                                 |



# 1. Informations Générales

## 1.1 Informations relatives à la société

Plus d'informations peuvent être obtenues en contactant :

- LEDVANCE GmbH, Parkring 1-5, 85748 Garching, Allemagne
- ou sur le site web : www.ledvance.com
- ou par E-Mail LCA@ledvance.com.

## 1.2 Informations relatives au produit

Le nom du produit étudié est « TRUSYS UNIV P 75W 840 W CL DALI » avec la description du produit suivante :

#### Avantages du produit

- La solution pour la rénovation : montage universel sur les chemins lumineux existants
- Installation facile, pas d'outils nécessaires pour la connexion
- Économie d'énergie et coût avantageux
- Pour des applications variées grâce à différentes plages de lumens et d'angles de faisceau
- 5 ans de garantie

## **Zones d'application**

- Remplacement direct des luminaires avec lampes fluorescentes compactes
- Halls industriels, entrepôts à hauts rayonnages, quincailleries
- Supermarchés

#### Caractéristiques du produit

- Alimentation DALI-2 prêt pour l'IoT
- Angles de faisceau : 90° (W), 60° (N), 30° (VN)
- Solution SMART avec des boutons poussoirs
- Efficacité lumineuse : jusqu'à 180 lm/W
- Durée de vie (L80/B10) : jusqu'à 100 000 h (à 25 °C)
- Uniformité initale des couleurs : ≤ 3 SDCM

#### **Technique / Accessoires**

Divers accessoires disponibles

#### Durée de vie

LEDVANCE déclare pour le luminaire les durées de vie suivantes :

- Durée de vie L70/B50 à 25 °C : 120 000 h
- Durée de vie L80/B10 à 25 °C : 100 000 h
- Durée de vie L90/B10 à 25 °C : 44 000 h

Les données clés du produit sont résumées sous forme de tableau ci-après.

#### Tableau 1 : Données techniques clés

| Information                       |                                                                  |
|-----------------------------------|------------------------------------------------------------------|
| Type de luminaire                 | Chemins lumineux                                                 |
| Désignation courte                | TRUSYS UNIV P 75W 840 W CL DALI                                  |
| Mode de fonctionnement            | Driver LED intégré                                               |
| Type de source                    | LED intégrées, non échangeables                                  |
| Température de couleur            | 4000K                                                            |
| Puissance nominale                | 75W                                                              |
| Flux lumineux                     | 12 750lm                                                         |
| Indice de rendu des couleurs Ra   | >80                                                              |
| Indice de protection IK           | IK02                                                             |
| Indice de protection IP           | IP20                                                             |
| Tension nominale                  | 220240 V                                                         |
| Durée de vie nominale (L70/B50)   | 120 000 h                                                        |
| Longueur                          | 1504 mm                                                          |
| Largeur                           | 68 mm                                                            |
| Hauteur                           | 26 mm                                                            |
| Type de détecteur                 | N/A                                                              |
| Domaines d'application            | Bâtiments résidentiels ; Bureaux ; Établissements d'enseignement |
| LOR (rapport de sortie lumineuse) | $\eta = 99,6\%$                                                  |

Sur la base de la durée de vie assignée selon EN 15193-1:2017 :

Tableau 2 : Durée de vie calculée en années par type de bâtiment

| Type d'application                                                  | Heures de fonctionnement annuelles par défaut [h] | Durée de vie opérationnelle (années) |
|---------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|
| Bâtiments résidentiels ; Bureaux ;<br>Établissements d'enseignement | 3 500                                             | 34,3                                 |

Conformément aux exigences du PSR, la durée de vie opérationnelle du luminaire ici étudié est de 34,3 ans.

## 1.3 Vue d'ensemble

Les informations générales utilisées pour ce PEP sont répertoriées ci-dessous :

Tableau 3: Informations de base

| Information                                                                   |                                                                                                                                   |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Unité fonctionnelle                                                           | Fournir un éclairage artificiel dont le flux lumineux sortant est de 1000 lumen pendant une durée de vie de référence de 35 000h. |
| Le produit de référence*                                                      | 0,0229 produit                                                                                                                    |
| Étapes du cycle de vie couvertes (selon l'EN 15804+A2)                        | Du berceau à la tombe et Module D                                                                                                 |
| Catégorie de produit selon le PSR                                             | Luminaires                                                                                                                        |
| Nom de la famille de produits (dans le d'un PEP couvrant une famille de produ | ·                                                                                                                                 |

<sup>\*</sup> Le produit de référence est calculé comme suit :

$$\frac{1\,000\,lm}{\textit{Outgoing Luminous Flux of the Analyzed Product (lm)}} \times \frac{35\,000\,h}{\textit{Declared Product Lifetime of the Analyzed Product (h)}}$$

Par conséquent, pour le produit concerné :

$$\frac{1\ 000}{12\ 750} \times \frac{35\ 000}{120\ 000} = 0,0229$$

# 1.4 Famille homogène

Le produit de référence représente la famille TRUSYS UNIVERSAL (DALI), qui diffère en termes de puissance, type de pilote, flux de sortie utile, angle de faisceau et poids,

Les variations entre les produits de cette famille évoluent dans les gammes suivantes :

Tableau 4 : Gammes de variations des produits pour une famille homogène

| Critère            | Unité | Valeur pour le produit<br>de référence | Valeur minimale dans la famille | Valeur maximale dans<br>la famille |
|--------------------|-------|----------------------------------------|---------------------------------|------------------------------------|
| Du pouvoir         | W     | 75                                     | 73                              | 75                                 |
| Flux sortant utile | lm    | 12 750                                 | 12 400                          | 12 750                             |
| Poids              | kg    | 1,790                                  | 1,695                           | 1,790                              |
| Angle du faisceau  | Degré | 90°                                    | 30°                             | 90°                                |

La présente déclaration PEP est valable pour tous les produits de la famille homogène décrite. La feuille de calcul fournie au paragraphe 5 Extrapolation de ce document doit être utilisée par l'utilisateur PEP pour extrapoler l'impact des autres produits de la famille TRUSYS UNIVERSAL (DALI), sur la base des paramètres techniques du produit considéré, comme demandé par le PSR.





# 2 Composition

## 2.1 Vue d'ensemble

#### Tableau5: Composition d'ensemble

| Information | Poids (kg] | Part [%] |  |
|-------------|------------|----------|--|
| Poids total | 2,486      | 100      |  |
| Produit     | 1,779      | 71,6     |  |
| Emballage   | 0,707      | 28,4     |  |

## 2.2 Produit

Tableau 6: Composition produit

| Information                   | Poids (kg] | Somme du poids [kg] | Part [%] |
|-------------------------------|------------|---------------------|----------|
| TOTAL                         |            | 1,779               | 100      |
| Métaux                        |            | 0,764               | 42,9     |
| - Aluminium                   | 0,605      |                     | 34,0     |
| - Acier                       | 0,159      |                     | 8,9      |
| Plastiques                    |            | 0,390               | 21,9     |
| - PMMA                        | 0,285      |                     | 16,0     |
| - Polycarbonate (PC)          | 0,099      |                     | 5,6      |
| - PVC                         | 0,006      |                     | 0,3      |
| Les autres                    |            | 0,625               | 35,2     |
| - Électronique                | 0,330      |                     | 18,6     |
| - Câbles internes et externes | 0,295      |                     | 16,6     |

# 2.3 Emballage

Tableau 7 : Composition de l'emballage

| Information     | Poids (kg] | Part [%] |  |
|-----------------|------------|----------|--|
| TOTAL           | 0,707      | 100      |  |
| Papier / Carton | 0,703      | 99,4     |  |
| Plastiques      | 0,004      | 0,6      |  |

Un emballage secondaire en carton est utilisé pour l'expédition. En outre, l'emballage des matières premières et des composants est considéré, conformément au PSR0014-ED2.0-EN-2023 07 13, comme une quantité moyenne de 5 % de la masse du luminaire. Cet emballage supplémentaire n'est pas pris en compte dans le Tableau 7 car il s'agit d'une hypothèse supplémentaire.

# 3 Les différentes étapes du Cycle de vie



## 3.1 Fabrication

Le fabricant s'approvisionne en toutes pièces auprès de fournisseurs internationaux. Sur le site de fabrication en Chine, le produit est assemblé en utilisant de l'énergie et des auxiliaires. Le produit est ensuite emballé et distribué au client.

Le site de production dispose d'un système de gestion environnementale certifié selon la norme ISO 14001:2015.



# 3.2 Distribution

Le principal marché est l'Europe. Ainsi, le présent modèle intègre un transport intercontinental selon les règle du PEP-PCR-ed4-EN-2021 09 06 :

Bateau : 19 000 kmCamion : 1 000 km

Les hypothèses de base relatives au transport sont énumérées ci-dessous.

Tableau 8 : Hypothèses de base pour la Distribution

| Information                                               | Unité      | Camion   | Bateau      |
|-----------------------------------------------------------|------------|----------|-------------|
| Type de carburant                                         | -          | Diesel   | Fioul lourd |
| Consommation carburant                                    | l/(kg*km)  | 2.80E-03 | 2.30E-04    |
| Distance totale                                           | kilomètres | 1 000    | 19 000      |
| Utilisation des capacités (y compris les parcours à vide) | %          | 85       | 48          |
| Densité des produits transportés                          | kg/m³      | n.a.     | n.a.        |
| Facteur d'utilisation de la capacité en volume            | -          | n.a.     | n.a.        |



# 3.3 Installation

Aucun apport d'énergie ou de matériel supplémentaire n'est requis. Lors de l'installation, le produit est déballé. Les matériaux d'emballage sont traités en appliquant les valeurs par défaut selon les règles du PSR-0014-ED2.0-EN-2023 07 13.

Tableau 9 : Données Europe sur la fin de vie des emballages

| Scenario de traitement                   | Métaux | Papier &<br>Papier carton | Bois | Plastiques |
|------------------------------------------|--------|---------------------------|------|------------|
| Incinération sans récupération d'énergie | 0%     | 0%                        | 0%   | 0%         |
| Incinération avec récupération d'énergie | 2%     | 9%                        | 31%  | 37%        |
| Décharge                                 | 21%    | 9%                        | 38%  | 23%        |
| Recyclage                                | 77%    | 82%                       | 31%  | 41%        |





## 3.4 Phase d'utilisation

Le produit ne génère pas d'émissions directes (B1) et est conçu de telle sorte qu'aucune maintenance n'est requise (B2) et qu'aucune pièce ne doive être remplacée (B4). De plus, aucune réparation standard (B3) ou remise à neuf (B5) n'est prévue. L'utilisation du produit consomme de l'électricité (B6), mais pas d'eau (B7).

Le principal marché est l'Europe. C'est donc le mix énergétique européen qui a ici été utilisé. De plus, le produit de référence contient un composant permettant la fonction de gestion de l'éclairage, un détecteur de mouvement et de lumière. Par conséquent, la consommation totale d'énergie en B6 est calculée avec un coefficient d'économie d'énergie de 0,55 selon les règles du /PSR-0014-ED2.0-EN-2023 07 13/.



## 3.5 Fin de vie

Le produit relève de la directive 2012/19/UE relative aux déchets d'équipements électriques et électroniques (DEEE) et son marché principal est l'Europe. Par conséquent, les statistiques européennes sur le traitement des équipements d'éclairage en tant que sous-catégorie des DEEE à partir de 2018 ont été utilisées. Le scénario EoL ("End of Life") affiche les moyennes européennes suivantes :

| • | Incinération sans récupération d'énergie | 6,5%  |
|---|------------------------------------------|-------|
| • | Incinération avec récupération d'énergie | 7,6%  |
| • | Décharge :                               | 6,5%  |
| • | Recyclage                                | 79,4% |



# 3.6 Bénéfices et charges au-delà du cycle de vie (Module D)

L'incinération avec récupération d'énergie et recyclage du produit (y compris l'emballage) génère des bénéfices environnementaux en évitant la production de matières premières et d'énergie. Les quantités et types de flux de matières utilisés pour le calcul des avantages sont répertoriés dans Tableau 10.

Tableau 10 : Flux de matières pour les bénéfices et charges au-delà des limites du système

| Information                                               | Unité                  | Valeur |
|-----------------------------------------------------------|------------------------|--------|
| Poids total pour réutilisation                            | kg/unité fonctionnelle | 0      |
| Poids total pour recyclage                                | kg/unité fonctionnelle | 0,032  |
| - Part des métaux                                         | %                      | 42,9   |
| - Part des plastiques                                     | %                      | 21,9   |
| - Part autres                                             | %                      | 35,1   |
| Poids total pour incinération avec récupération d'énergie | kg/unité fonctionnelle | 0,019  |
| - Part du papier                                          | %                      | 83,5   |
| - Part autres                                             | %                      | 16,5   |





# 4 Impacts Environnementaux

## 4.1 Introduction

Les tableaux suivants regroupent les informations clé servant au calcul des impacts environnementaux.

Tableau 11 : Informations de base pour l'analyse du cycle de vie (Modèle LCA)

| Information         | Valeur                                                                                                                            |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Logiciel LCA        | GaBi / LCA for experts 10                                                                                                         |
| Base de données LCI | GaBi Professional 2023.1 + Electronics Extension 2023.1                                                                           |
| Version PCR         | PEP-PCR-ED4-EN-2021 09 06                                                                                                         |
| Version PSR         | PEP-PSR-0014-ED2.0-EN-2023 07 13                                                                                                  |
| Unité fonctionnelle | Fournir un éclairage artificiel dont le flux lumineux sortant est de 1000 lumen pendant une durée de vie de référence de 35 000h. |

# 4.2 Résultat par unité fonctionnelle

Les résultats suivants ont été développés en considérant un flux lumineux artificiel sortant de 1 000 lumens sur une durée de vie de référence de 35 000 heures. Ils se réfèrent aux principaux indicateurs d'impacts environnementaux et aux indicateurs décrivant l'utilisation des ressources, les catégories de déchets et les flux extrants conformément à la norme EN 15804:2012+A2:2019.

Tableau 12 : Résultats des principaux indicateurs d'impacts environnementaux par unité fonctionnelle

|                                  | Total<br>(hors D) |           |          | Fabrica-<br>tion | Distribu-<br>tion | Installa-<br>tion | Usage    | Fin de vie |          |          | Bénéfices et<br>charges au-<br>delà du cycle<br>de vie |
|----------------------------------|-------------------|-----------|----------|------------------|-------------------|-------------------|----------|------------|----------|----------|--------------------------------------------------------|
|                                  |                   | A1        | A2       | А3               | A4                | A5                | В6       | C2         | C3       | C4       | D                                                      |
| GWP - total [kg CO2 eq.]         | 3,41E+01          | 5,05E-01  | 2,97E-03 | 1,68E-02         | 1,48E-02          | 1,27E-02          | 3,35E+01 | 2,79E-03   | 2,79E-02 | 1,94E-03 | -1,31E-01                                              |
| GWP - fossil [kg CO2 eq.]        | 3,38E+01          | 5,07E-01  | 2,93E-03 | 3,93E-02         | 1,47E-02          | 7,32E-03          | 3,32E+01 | 2,76E-03   | 2,79E-02 | 1,94E-03 | -1,50E-01                                              |
| GWP - biogenic [kg CO2 eq.]      | 2,69E-01          | -2,23E-03 | 6,72E-06 | -2,26E-02        | 1,90E-05          | 5,31E-03          | 2,89E-01 | 6,32E-06   | 1,62E-05 | 5,22E-07 | 1,94E-02                                               |
| GWP - luluc [kg CO2 eq.]         | 4,14E-03          | 3,27E-04  | 2,75E-05 | 8,81E-05         | 3,64E-05          | 2,33E-05          | 3,61E-03 | 2,59E-05   | 8,84E-07 | 1,59E-07 | -1,23E-04                                              |
| ODP [kg CFC-11 eq.]              | 6,15E-10          | 2,40E-12  | 3,87E-16 | 1,41E-13         | 1,25E-15          | 1,39E-14          | 6,13E-10 | 3,64E-16   | 3,81E-14 | 1,58E-15 | -2,94E-13                                              |
| AP [Mole of H+ eq.]              | 7,39E-02          | 2,58E-03  | 4,77E-06 | 1,28E-04         | 2,56E-04          | 1,34E-05          | 7,09E-02 | 4,48E-06   | 1,22E-05 | 1,64E-06 | -9,98E-04                                              |
| EP - freshwater [kg P eq.]       | 1,29E-04          | 3,97E-06  | 1,09E-08 | 4,33E-07         | 1,68E-08          | 2,18E-07          | 1,24E-04 | 1,02E-08   | 9,32E-09 | 5,85E-10 | -4,29E-07                                              |
| EP - marine [kg N eq.]           | 1,75E-02          | 3,95E-04  | 1,84E-06 | 3,98E-05         | 9,19E-05          | 6,18E-06          | 1,70E-02 | 1,73E-06   | 4,25E-06 | 7,04E-07 | -1,26E-04                                              |
| EP - terrestrial [Mole of N eq.] | 1,83E-01          | 4,18E-03  | 2,12E-05 | 4,08E-04         | 1,01E-03          | 5,63E-05          | 1,77E-01 | 1,99E-05   | 5,53E-05 | 8,28E-06 | -1,36E-03                                              |
| POCP [kg NMVOC eq.]              | 4,68E-02          | 1,18E-03  | 4,23E-06 | 1,06E-04         | 2,52E-04          | 1,29E-05          | 4,53E-02 | 3,98E-06   | 1,12E-05 | 1,84E-06 | -3,81E-04                                              |
| ADPE [kg Sb eq.]                 | 6,75E-05          | 6,23E-05  | 1,97E-10 | 6,10E-09         | 3,58E-10          | 3,17E-09          | 5,14E-06 | 1,85E-10   | 2,91E-10 | 6,96E-12 | -3,37E-05                                              |
| ADPF [MJ]                        | 7,07E+02          | 7,03E+00  | 4,05E-02 | 4,75E-01         | 1,86E-01          | 1,02E-01          | 6,99E+02 | 3,81E-02   | 5,58E-02 | 2,22E-03 | -2,03E+00                                              |
| WDP [m³ world equiv.]            | 7,54E+00          | 1,30E-01  | 3,59E-05 | 8,82E-03         | 6,53E-05          | 4,60E-04          | 7,40E+00 | 3,38E-05   | 3,90E-03 | 4,24E-04 | -2,79E-02                                              |





Tableau 13 : Résultats des indicateurs d'utilisation des ressources, des catégories de déchets et de flux extrants, par unité fonctionnelle

| Indicateur                                                                   | Acronyme [Unité]              | Valeur    |
|------------------------------------------------------------------------------|-------------------------------|-----------|
| Utilisation de l'énergie primaire renouvelable (hors matières premières)     | PERE [MJ]                     | 4,19E+02  |
| Utilisation de l'énergie primaire renouvelable (matières premières)          | PERM [MJ]                     | 2,90E-01  |
| Utilisation de l'énergie primaire renouvelable TOTALE                        | PERT [MJ]                     | 4,20E+02  |
| Utilisation de l'énergie primaire non-renouvelable (hors matières premières) | PENRE [MJ]                    | 7,05E+02  |
| Utilisation de l'énergie primaire non-renouvelable (matières premières)      | PENRM [MJ]                    | 2,52E-01  |
| Utilisation de l'énergie primaire non-renouvelable TOTALE                    | PENRT [MJ]                    | 7,05E+02  |
| Utilisation de matière secondaire                                            | SM [kg]                       | 3,33E-02  |
| Utilisation de combustibles secondaires renouvelables                        | RSF [MJ]                      | 0,00E+00  |
| Utilisation de combustibles secondaires non-renouvelables                    | NRSF [MJ]                     | 0,00E+00  |
| Utilisation nette d'eau douce                                                | FW [m³]                       | 7,52E+00  |
| Déchets dangereux éliminés                                                   | HWD [kg]                      | -1,10E-08 |
| Déchets non dangereux éliminés                                               | NHWD [kg]                     | 5,52E-01  |
| Déchets radioactifs éliminés                                                 | RWD [kg]                      | 1,11E-01  |
| Composants destinés à la réutilisation                                       | CRU [kg]                      | 0,00E+00  |
| Matériaux destinés au recyclage                                              | MFR [kg]                      | 3,22E-02  |
| Matériaux destinés à la récupération d'énergie                               | MER [kg]                      | 1,25E-02  |
| Electricité fournie                                                          | EEE [MJ]                      | 4,94E-02  |
| Energie thermique fournie                                                    | EET [MJ]                      | 1,09E-01  |
| Carbonne biogénique contenu dans le produit                                  | Biog. C dans le produit [kg]  | 0,00E+00  |
| Carbonne biogénique contenu dans l'emballage associé                         | Biog. C dans l'emballage [kg] | 6,92E-03  |

# 4.3 Résultat par Produit

Les résultats suivants ont été élaborés en tenant compte du cycle de vie complet du produit doté des propriétés techniques décrites au point 1.

Tableau14: Résultats des principaux indicateurs d'impacts environnementaux par unité de produit

|                                  | Total<br>(hors D) | Matières premières<br>& pièces |          | Fabrica-<br>tion | Distribu-<br>tion lnstalla-<br>tion Us |          | Usage    | Fin de vie |          |          | Bénéfices et<br>charges au-<br>delà du cycle<br>de vie |
|----------------------------------|-------------------|--------------------------------|----------|------------------|----------------------------------------|----------|----------|------------|----------|----------|--------------------------------------------------------|
|                                  |                   | A1                             | A2       | А3               | A4                                     | A5       | В6       | C2         | C3       | C4       | D                                                      |
| GWP - total [kg CO2 eq.]         | 1,49E+03          | 2,21E+01                       | 1,30E-01 | 7,35E-01         | 6,45E-01                               | 5,53E-01 | 1,46E+03 | 1,22E-01   | 1,22E+00 | 8,49E-02 | -5,72E+00                                              |
| GWP - fossil [kg CO2 eq.]        | 1,48E+03          | 2,22E+01                       | 1,28E-01 | 1,72E+00         | 6,43E-01                               | 3,20E-01 | 1,45E+03 | 1,21E-01   | 1,22E+00 | 8,49E-02 | -6,56E+00                                              |
| GWP - biogenic [kg CO2 eq.]      | 1,18E+01          | -9,75E-02                      | 2,94E-04 | -9,89E-01        | 8,31E-04                               | 2,32E-01 | 1,26E+01 | 2,76E-04   | 7,07E-04 | 2,28E-05 | 8,47E-01                                               |
| GWP - Iuluc [kg CO2 eq.]         | 1,81E-01          | 1,43E-02                       | 1,20E-03 | 3,85E-03         | 1,59E-03                               | 1,02E-03 | 1,58E-01 | 1,13E-03   | 3,86E-05 | 6,95E-06 | -5,38E-03                                              |
| ODP [kg CFC-11 eq.]              | 2,69E-08          | 1,05E-10                       | 1,69E-14 | 6,18E-12         | 5,47E-14                               | 6,06E-13 | 2,68E-08 | 1,59E-14   | 1,67E-12 | 6,89E-14 | -1,28E-11                                              |
| AP [Mole of H+ eq.]              | 3,23E+00          | 1,13E-01                       | 2,08E-04 | 5,61E-03         | 1,12E-02                               | 5,86E-04 | 3,10E+00 | 1,96E-04   | 5,34E-04 | 7,18E-05 | -4,36E-02                                              |
| EP - freshwater [kg P eq.]       | 5,62E-03          | 1,73E-04                       | 4,75E-07 | 1,89E-05         | 7,32E-07                               | 9,53E-06 | 5,42E-03 | 4,47E-07   | 4,07E-07 | 2,56E-08 | -1,88E-05                                              |
| EP - marine [kg N eq.]           | 7,65E-01          | 1,73E-02                       | 8,04E-05 | 1,74E-03         | 4,02E-03                               | 2,70E-04 | 7,42E-01 | 7,57E-05   | 1,86E-04 | 3,08E-05 | -5,52E-03                                              |
| EP - terrestrial [Mole of N eq.] | 8,00E+00          | 1,83E-01                       | 9,25E-04 | 1,78E-02         | 4,40E-02                               | 2,46E-03 | 7,75E+00 | 8,70E-04   | 2,42E-03 | 3,62E-04 | -5,93E-02                                              |
| POCP [kg NMVOC eq.]              | 2,05E+00          | 5,18E-02                       | 1,85E-04 | 4,65E-03         | 1,10E-02                               | 5,66E-04 | 1,98E+00 | 1,74E-04   | 4,88E-04 | 8,05E-05 | -1,67E-02                                              |
| ADPE [kg Sb eq.]                 | 2,95E-03          | 2,73E-03                       | 8,62E-09 | 2,67E-07         | 1,57E-08                               | 1,38E-07 | 2,25E-04 | 8,11E-09   | 1,27E-08 | 3,04E-10 | -1,47E-03                                              |
| ADPF [MJ]                        | 3,09E+04          | 3,07E+02                       | 1,77E+00 | 2,08E+01         | 8,12E+00                               | 4,45E+00 | 3,05E+04 | 1,67E+00   | 2,44E+00 | 9,70E-02 | -8,86E+01                                              |
| WDP [m³ world equiv.]            | 3,30E+02          | 5,67E+00                       | 1,57E-03 | 3,85E-01         | 2,86E-03                               | 2,01E-02 | 3,24E+02 | 1,48E-03   | 1,71E-01 | 1,86E-02 | -1,22E+00                                              |



LEDVANCE GmbH Parkring 1-5 85748, Garching, Allemagne www.ledvance.fr LCA@ledvance.com



# Tableau15 : Résultats des indicateurs d'utilisation des ressources, des catégories de déchets et de flux extrants, par unité de produit

| Indicateur                                                                   | Acronyme [Unité]              | Valeur    |
|------------------------------------------------------------------------------|-------------------------------|-----------|
| Utilisation de l'énergie primaire renouvelable (hors matières premières)     | PERE [MJ]                     | 1,83E+04  |
| Utilisation de l'énergie primaire renouvelable (matières premières)          | PERM [MJ]                     | 1,27E+01  |
| Utilisation de l'énergie primaire renouvelable TOTALE                        | PERT [MJ]                     | 1,83E+04  |
| Utilisation de l'énergie primaire non-renouvelable (hors matières premières) | PENRE [MJ]                    | 3,08E+04  |
| Utilisation de l'énergie primaire non-renouvelable (matières premières)      | PENRM [MJ]                    | 1,10E+01  |
| Utilisation de l'énergie primaire non-renouvelable TOTALE                    | PENRT [MJ]                    | 3,08E+04  |
| Utilisation de matière secondaire                                            | SM [kg]                       | 1,46E+00  |
| Utilisation de combustibles secondaires renouvelables                        | RSF [MJ]                      | 0,00E+00  |
| Utilisation de combustibles secondaires non-renouvelables                    | NRSF [MJ]                     | 0,00E+00  |
| Utilisation nette d'eau douce                                                | FW [m³]                       | 3,29E+02  |
| Déchets dangereux éliminés                                                   | HWD [kg]                      | -4,80E-07 |
| Déchets non dangereux éliminés                                               | NHWD [kg]                     | 2,41E+01  |
| Déchets radioactifs éliminés                                                 | RWD [kg]                      | 4,87E+00  |
| Composants destinés à la réutilisation                                       | CRU [kg]                      | 0,00E+00  |
| Matériaux destinés au recyclage                                              | MFR [kg]                      | 1,41E+00  |
| Matériaux destinés à la récupération d'énergie                               | MER [kg]                      | 5,48E-01  |
| Electricité fournie                                                          | EEE [MJ]                      | 2,16E+00  |
| Energie thermique fournie                                                    | EET [MJ]                      | 4,75E+00  |
| Carbonne biogénique contenu dans le produit                                  | Biog. C dans le produit [kg]  | 0,00E+00  |
| Carbonne biogénique contenu dans l'emballage associé                         | Biog. C dans l'emballage [kg] | 3,02E-01  |

# 5 Extrapolation

## 5.1 Règles d'Extrapolation

Les règles d'extrapolations ont été calculées conformément aux indications du PCR-ed4-EN-2021 09 14 et du PSR-0014-ed2.0-EN-2023 07 18. Les règles définies doivent être appliquées en utilisant les règles d'extrapolation fournies dans les tableaux suivants.

Tableau16 : Paramètres d'extrapolation pour le produit de référence

| Paramètres                                 | Valeur du produit de référence (TRUSYS UNIV P 75W 840 W CL DALI) |
|--------------------------------------------|------------------------------------------------------------------|
| Flux lumineux sortant [lm]                 | 12 750                                                           |
| Poids de la source lumineuse [kg]          | 0,178                                                            |
| Poids du corps du luminaire [kg]           | 1,397                                                            |
| Poids de l'alimentation [kg]               | 0,215                                                            |
| Poids du système de gestion de l'écla [kg] | irage N/A                                                        |
| Poids de l'emballage [kg]                  | 1,304                                                            |
| Puissance [W]                              | 200                                                              |
| Hauteur [mm]                               | 162                                                              |
| Diamètre [mm]                              | 321                                                              |

Le calcul des coefficients d'extrapolation au niveau de l'unité fonctionnelle est pris en compte à l'aide de la formule suivante :

Extrapolation coefficent at the product level  $\times \frac{\text{Lighting output of reference product (lm)}}{\text{Lighting output of concerned product (lm)}}$ 

# 5.2 Coefficient d'extrapolation

Les coefficients d'extrapolation indiqués ici concernent le PRODUIT (unité déclarée) et non l'unité fonctionnelle.

- Étant donné que le produit concerné ne fournit aucune fonction de gestion de l'éclairage intégrée, le coefficient d'extrapolation pour les composants de la fonction de gestion de l'éclairage est de 0. Le driver DALI est considéré comme un équipement de contrôle capable de communiquer avec un système externe de gestion de l'éclairage.
- Le produit concerné étant gradable et fonctionnant avec un driver DALI capable de communiquer avec un système externe de gestion de l'éclairage, son coefficient d'économie d'énergie est de 0,5. Aucun remplacement de la source lumineuse n'est possible.

LEDVANCE GmbH Parkring 1-5 85748, Garching, Allemagne www.ledvance.fr LCA@ledvance.com



Tableau 17: Coefficients d'extrapolation calculés par produit

| Nom du produit                   | Flux de<br>sortie<br>utile [lm] | Fabrica-<br>tion | Distribu-<br>tion | Installa-<br>tion | Usage | Fin de vie |
|----------------------------------|---------------------------------|------------------|-------------------|-------------------|-------|------------|
| TRUSYS UNIV P 75W 840 W CL DALI  | 12 750                          | 1,00             | 1,00              | 1,00              | 1,00  | 1,00       |
| TRUSYS UNIV P 75W 840 N CL DALI  | 12 750                          | 1,00             | 1,00              | 1,00              | 1,00  | 1,00       |
| TRUSYS UNIV P 75W 840 VN CL DALI | 12 750                          | 1,00             | 1,00              | 1,00              | 1,00  | 1,00       |
| TRUSYS UNIV P 73W 840 VN CL PS   | 12 400                          | 0,96             | 0,96              | 1,00              | 1,95  | 0,95       |
| TRUSYS UNIV P 73W 840 N CL PS    | 12 400                          | 0,96             | 0,96              | 1,00              | 1,95  | 0,95       |
| TRUSYS UNIV P 73W 840 W CL PS    | 12 400                          | 0,96             | 0,96              | 1,00              | 1,95  | 0,95       |

Numéro d'enregistrement : LEDV-00033-V01.01-FR- PEP ecopassport®