

ENVIRONMENTAL PRODUCT DECLARATION

Independent verification of the declaration and data in compliance with ISO 14025: 2006

LEDVANCE DAMP PROOF HE Reference product: DP HE DA 1200 P 29W 865 IP65

Registration number	LEDV-00036-V01.01-EN	Drafting rules	PEP-PCR-ED4-EN-2021 09 06
Verifier accreditation number	VH08	Supplemented by	PSR-0014-ED2.0-EN-2023 07 13
Date of issue	12-2024	Validity period	5 years
EPD prepared by	LEDVANCE GmbH		
Independent verification of the dec	claration and data in compliance	with ISO 14025: 2006	
Internal		External	Х
The PCR review was conducted b (DDemain) PEP are compliant with XP C08-1		Julie Orgelet	PEP
The elements of the present PEP gram.			PASS
Document in compliance with ISO tions. Type III environmental decla		abels and declara-	

1. General information

1.1 Company information

Further technical information can be obtained by contacting:

- LEDVANCE GmbH, Parkring 1-5, 85748 Garching, Germany
- or on the website <u>www.ledvance.com</u>
- or by E-Mail <u>LCA@ledvance.com</u>.

1.2 Reference product information

The name of the product under study is "DP HE DA 1200 P 29W 865 IP65" with the following product description:

Product benefits

- Easy installation, no tools required for connection
- High luminous efficacy: up to 160 lm/W
- Convenient replaceable Driver and Light Source
- 5 years guarantee

Areas of application

- Industrial and storage facilities
- Car parks and underpasses
- Garages
- Workshops, assembly lines

Equipment / Accessories

- 2x stainless steel clamps with safety screws included
- 2x stainless steel triangle for suspension included
- 1x additional M20 cable gland (1x preinstalled) included
- 2x M20 silicon grommets included

Reference Service Life

LEDVANCE declares for the luminaire following service lifetimes:

- Lifespan L80/B50 at 25 °C: 100,000 h
- Lifespan L80/B50 at 35 °C: 70,000 h

The key information about the product is summarized in the following table.

Table 1: Key technological data

Information	
Type of luminaire	Damp Proof
Short Text Product	DP HE DA 1200 P 29W 865 IP65
Operating mode	Integrated LED driver
Lamp type	Integrated LED not exchangeable
Colour temperature	6500 K
Nominal wattage	29 W
Luminous flux	4,640 lm
Colour rendering index Ra	> 80
Protection class IK	IK08
Type of protection	IP65
Nominal voltage	220240 V
Nominal lifetime (L70/B50)	100,000 h
Length	1,200 mm
Height	68 mm
Width	82 mm
Type of Sensor	N/A
Area of Application	Industry

Based on the assigned lifetime according EN 15193-1:2017:

Table 2: Calculated operation lifetime in years per type of building

Type of building	Annual operating hours by default [h]	Operational lifetime [years]
Industry	4,000	25

Following the requirements of the PSR, the operational lifetime of the luminaire of study is 25 years.

1.3 Overview

The general information used for the EPD are listed below:

Table 3: Basic EPD information

Information	
Functional unit	Provide lighting that delivers an outgoing artificial luminous flux of 1,000 lumens during a reference lifetime of 35,000 hours
Reference flow / declared unit*	0.0754 product(s)
Life cycle stages covered (according to EN15804+A2)	Cradle-to-grave and Module D
Product category according to PSR	Luminaires
Product family name (if family EPD)	DAMP PROOF HE

* The reference flow is calculated as:

1,000 lm Outgoing Luminous Flux of the Analyzed Product (lm) × 35,000 h Declared Product Lifetime of the Analyzed Product (h)

Consequently, the reference flow of the following product corresponds to:

 $\frac{1,000}{4,640} \times \frac{35,000}{100,000} = 0.0754$

1.4 Homogeneous environmental family

The reference product represents the DAMP PROOF HE family, which differs in terms of power (W), useful output flux (Im) of the integrated LED installed in the luminaries, colour temperature, control gear (ON/OFF vs. DALI), weight, and dimensions (length).

The range of variations for the products in the same family are the following:

Criteria	Unit	Value for the reference product	Minimum value in product range	Maximum value in product range
Electrical Power	W	29	23	73
Useful Output Flux	lm	4,640	3,680	11,680
Colour Temperature	K	6,500	4,000	6,500
Weight (Product)	kg	1.427	1.381	1.856
Length	mm	1,200	1,200	1,500

Table 4: Range of variation for homogeneous environmental family

The present PEP declaration is valid for all the products in the described homogenous environmental family. The spreadsheet provided in paragraph 5 Extrapolation of this document shall be used by the PEP user to extrapolate the impact of the other products from the DAMP PROOF HE Family, based on the technical parameters of the considered product, as requested by the PSR.

2 Constituent materials

2.1 Overview

Table 5: Product composition

Information	Weight [kg]	Share [%]
Total weight	1.759	100
Product	1.427	81.1
Packaging	0.332	18.9

2.2 Product

Table 6: Material composition - product

Information	Weight [kg]	Sum of weight [kg]	Share [%]
TOTAL		1.427	100
Metals		0.502	35.2
- Steel	0.502		35.2
Plastics		0.725	50.8
- Polycarbonate (PC)	0.642		45.0
- Polypropylene (PP)	0.043		3.0
- Silicone Rubber	0.034		2.4
- Others	0.006		0.4
Others		0.200	14.0
- Electronics	0.172	· · ·	12.1
- Internal & External Wires	0.028		1.9

2.3 Packaging

Table 7: Material composition - packaging

Information	Weight [kg]	Share [%]
TOTAL	0.332	100
Paper/cardboard	0.332	100

Secondary packaging with cardboard is used for shipping. In addition, packaging of raw materials and components is considered as an average quantity of 5 % in mass of the luminaire according to /PSR-0014-ED2.0-EN-2023 07 13/. This additional packaging is not considered in Table 7 as it is an additional assumption.

3 Information on life cycle stages

3.1 Manufacturing

The manufacturer sources all parts from international suppliers. Within the manufacturing site in China, the product is assembled using energy and auxiliaries, if needed. Afterwards the product is packed in packaging materials and distributed to the client.

The production site has a certified Environmental management system according to ISO 14001:2015.

3.2 Distribution

The main market for the product is Europe. For this reason, an intercontinental transport following PEP-PCR– ed4-EN-2021 09 06 is considered in the model:

- Ship: 19,000 km
- Truck: 1,000 km

The background assumptions for transportation are listed below.

Table 8: Background information distribution

Information	Unit	Truck	Ship
Fuel type	-	Diesel	Heavy fuel oil
Fuel consumption	l/(kg*km)	2.80E-03	2.30E-04
Total distance	km	1,000	19,000
Capacity utilisation (including empty runs)	%	85	48
Bulk density of transported products	kg/m3	n.a.	n.a.
Volume capacity utilisation factor	-	n.a.	n.a.

3.3 Installation

No energy or material input is required. During installation, the product is unpacked. The packaging materials is treated by applying default values following PSR-0014-ED2.0-EN-2023 07 13.

Table 9: End of life data for packaging in Europe

Treatment scenario	Metal	Paper & Cardboard	Wood	Plastics
Incineration without energy recovery	0 %	0 %	0 %	0 %
Incineration with energy recovery	2 %	9 %	31 %	37 %
Landfill	21 %	9 %	38 %	23 %
Recycling rate	77 %	82 %	31 %	41 %

LEDVANCE

The product has no direct emissions (B1) and is designed so that no maintenance is required (B2) or parts need to be replaced (B4). Furthermore, no standard repairs (B3) or refurbishments (B5) are foreseen. The use of the product does consume electricity (B6), but no water (B7).

The main market for the product is Europe. Therefore, the European average grid mix has been used. In addition, the reference product contains a component associated with light management function (DALI Driver). Therefore, the total energy consumption in B6 is calculated with an energy saving coefficient of 0.5 according to /PSR-0014-ED2.0-EN-2023 07 13/.

3.5 End of life

The product falls under the Waste from Electrical and Electronic Equipment (WEEE) directive 2012/19/EU and its main market is Europe. Therefore, European statistics on the treatment of lighting equipment as subcategory of WEEE from 2018 has been used. The EoL scenario displays a European average and is the following:

•	Incineration without energy recovery:	6.5%
•	Incineration with energy recovery:	7.6%
•	Landfilling:	6.5%
•	Recycling:	79.4%

3.6 Benefits and loads beyond the system boundaries stage

The incineration with energy recovery and recycling of the product (incl. packaging) generates environmental benefits by avoiding the production of primary materials or energy. The amount and type of material flows used for the calculation of benefits are listed in Table 10.

Table 10: Material flows for Benefits and loads beyond the system boundaries

Information	Unit	Value
Total weight going into re-use	kg/functional unit	0
Total weight going into recycling	kg/functional unit	0.085
- Share of metals	%	35.2
- Share of plastics	%	50.8
- Share of others	%	14.0
Total weight going into incineration with energy recovery	kg/functional unit	0.033
- Share of paper	%	75.4
- Share of others	%	24.6

4 Environmental impacts

4.1 Introduction

The following table summarizes the key information for the calculation of the environmental impacts:

Table 11: Basic information LCA model

Information	Value
Used LCA software	GaBi / LCA for experts 10
Used LCI database	GaBi Professional 2023.2 + Electronics Extension 2023.2
PCR version	PEP-PCR-ED4-EN-2021 09 06
PSR version	PEP-PSR-0014-ED2.0-EN-2023 07 13
Functional unit	Provide lighting that delivers an outgoing artificial luminous flux of 1,000 lumens during a reference lifetime of 35,000 hours

4.2 Results per functional unit

The following results of the environmental declaration have been developed by considering an outgoing artificial luminous flux of 1,000 lumens over a reference lifetime of 35,000 hours. The results refer to the core environmental impact indicators and indicators describing resource use, waste categories, and output flows according to EN 15804:2012+A2:2019.

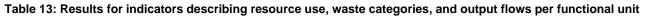

Benefits and oads beyond Raw materials & parts (excl. D GWP - total [kg CO2 eq.] 3.67E+01 8.87E-01 7.84E-03 1.13E-03 3.44E-02 1.95E-02 3.56E+01 7.38E-03 1.29E-01 5.14E-03 -1.54E-01 GWP - fossil [kg CO2 eq.] 3.64E+01 8.92E-01 7.75E-03 3.40E-02 3.43E-02 1.12E-02 3.53E+01 7.30E-03 1.29E-01 5.14E-03 -1.84E-01 GWP - biogenic [kg CO2 eq.] 2.76E-01 -5.69E-03 1.78E-05 -3.30E-02 4.43E-05 8.25E-03 3.07E-01 1.67E-05 3.32E-05 1.38E-06 3.04E-02 GWP - luluc [kg CO2 eq.] 4.71E-03 4 96E-04 7 27E-05 1 15E-04 8 49 F-05 3 62E-05 3.84E-03 6 85E-05 3 22F-06 4 21F-07 -1 74F-04 ODP [kg CFC-11 eq.] 6.57E-10 5.73E-12 1.00E-13 2.92E-15 2.13E-14 6.51E-10 9.63E-16 8.90E-14 4.17E-15 -7.63E-13 1.02E-15 AP [Mole of H+ eq.] 8.06E-02 4.44E-03 1.26E-05 1.05E-04 5.98E-04 2.08E-05 7.54E-02 1.19E-05 3.55E-05 4.34E-06 -1.80E-03 EP - freshwater [kg P eq.] 1.38E-04 5.23E-06 2.87E-08 6.75E-07 3.91E-08 3.38E-07 1.32E-04 2.70E-08 2.26E-08 1.55E-09 -7.29E-07 1.10E-05 6.44E-04 4.15E-05 -1.69E-04 EP - marine [kg N eq.] 1.90E-02 4.86E-06 2.14E-04 9.60E-06 1.80E-02 4.58E-06 1.86E-06 EP - terrestrial [Mole of N eq.] 1.98E-01 6.91E-03 5.59E-05 4.08E-04 2.35E-03 8.75E-05 1.88E-01 5.26E-05 1.66E-04 2.19E-05 -1.82E-03 POCP [kg NMVOC eq.] 5.09E-02 1.98E-03 1.12E-05 1.05E-04 5.89E-04 2.01E-05 4.81E-02 1.05E-05 2.92E-05 4.87E-06 -5.29E-04 ADPE [kg Sb eq.] 8.15E-05 5.21E-10 7.91E-09 8.36E-10 4.93E-09 5.46E-06 4.90E-10 6.75E-10 -4.19E-05 8.69E-05 1.84E-11 ADPF [MJ] 7.58E+02 1.41E+01 1.07E-01 4.25E-01 4.33E-01 1.58E-01 7.43E+02 1.01E-01 1.36E-01 5.87E-03 -2.63E+00 NDP [m³ world equiv.] 8.17E+00 1.93E-01 9.49E-05 1.02E-01 1.52E-04 7.00E-04 7.86E+00 8.94E-05 1.46E-02 1.12E-03 4.26E-02

Table 12: Results for core environmental impact indicators per functional unit

LEDVANCE

 $(\bigcirc$

Indicator	Acronym [Unit]	Value		
Renewable primary energy (without raw material)	PERE [MJ]	4.47E+02		
Renewable primary energy (raw material)	PERM [MJ]	4.50E-01		
Total use of renewable primary energy	PERT [MJ]	4.47E+02		
Non-renewable primary energy (without raw material)	PENRE [MJ]	7.54E+02		
Non-renewable primary energy (raw material)	PENRM [MJ]	1.62E+00		
Total use of non-renewable primary energy	PENRT [MJ]	7.56E+02		
Use of secondary materials	SM [kg]	6.07E-02		
Use of renewable secondary fuels	RSF [MJ]	0.00E+00		
Use of non-renewable secondary fuels	NRSF [MJ]	0.00E+00		
Net use of fresh water	FW [m3]	8.13E+00		
Hazardous waste disposed	HWD [kg]	2.52E-08		
Non-hazardous waste disposed	NHWD [kg]	6.04E-01		
Radioactive waste disposed	RWD [kg]	1.18E-01		
Components for reuse	CRU [kg]	0.00E+00		
Materials for recycling	MFR [kg]	5.26E-02		
Materials for energy recovery	MER [kg]	5.57E-02		
Exported electricity	EEE [MJ]	2.15E-01		
Exported thermal energy	EET [MJ]	4.85E-01		
Biogenic carbon content of the product	Biog. C in product [kg]	0.00E+00		
Biogenic carbon content of the associated packaging	Biog. C in packaging [kg]	1.08E-02		

4.3 Results per unit of product

The following results of the environmental declaration have been developed by considering the entire life cycle of one product with the technical properties described in paragraph 1.

	Total (excl. D)	Raw materials & parts				Installa- tion	Use	End of life		Benefits an loads beyou the system boundaries	
		A1 A2 A3 A4 A5	A5	A5 B6	C2	C3	C4	D			
GWP - total [kg CO2 eq.]	4.86E+02	1.18E+01	1.04E-01	1.50E-02	4.57E-01	2.59E-01	4.72E+02	9.79E-02	1.71E+00	6.81E-02	-2.04E+00
GWP - fossil [kg CO2 eq.]	4.83E+02	1.18E+01	1.03E-01	4.51E-01	4.55E-01	1.49E-01	4.68E+02	9.68E-02	1.71E+00	6.81E-02	-2.44E+00
GWP - biogenic [kg CO2 eq.]	3.66E+00	-7.55E-02	2.35E-04	-4.38E-01	5.88E-04	1.09E-01	4.07E+00	2.22E-04	4.40E-04	1.83E-05	4.04E-01
GWP - luluc [kg CO2 eq.]	6.25E-02	6.58E-03	9.64E-04	1.52E-03	1.13E-03	4.81E-04	5.08E-02	9.08E-04	4.26E-05	5.58E-06	-2.30E-03
ODP [kg CFC-11 eq.]	8.71E-09	7.60E-11	1.35E-14	1.33E-12	3.87E-14	2.83E-13	8.63E-09	1.28E-14	1.18E-12	5.53E-14	-1.01E-11
AP [Mole of H+ eq.]	1.07E+00	5.89E-02	1.67E-04	1.40E-03	7.93E-03	2.76E-04	9.99E-01	1.57E-04	4.71E-04	5.76E-05	-2.39E-02
EP - freshwater [kg P eq.]	1.83E-03	6.94E-05	3.81E-07	8.95E-06	5.18E-07	4.49E-06	1.75E-03	3.59E-07	2.99E-07	2.05E-08	-9.67E-06
EP - marine [kg N eq.]	2.51E-01	8.53E-03	6.44E-05	5.50E-04	2.84E-03	1.27E-04	2.39E-01	6.07E-05	1.46E-04	2.47E-05	-2.24E-03
EP - terrestrial [Mole of N eq.]	2.63E+00	9.17E-02	7.41E-04	5.42E-03	3.12E-02	1.16E-03	2.50E+00	6.98E-04	2.19E-03	2.90E-04	-2.42E-02
POCP [kg NMVOC eq.]	6.74E-01	2.63E-02	1.48E-04	1.39E-03	7.80E-03	2.66E-04	6.38E-01	1.40E-04	3.87E-04	6.46E-05	-7.01E-03
ADPE [kg Sb eq.]	1.15E-03	1.08E-03	6.90E-09	1.05E-07	1.11E-08	6.53E-08	7.23E-05	6.50E-09	8.94E-09	2.44E-10	-5.55E-04
ADPF [MJ]	1.00E+04	1.86E+02	1.42E+00	5.63E+00	5.75E+00	2.10E+00	9.84E+03	1.34E+00	1.80E+00	7.79E-02	-3.48E+01
WDP [m ³ world equiv.]	1.08E+02	2.56E+00	1.26E-03	1.35E+00	2.02E-03	9.28E-03	1.04E+02	1.19E-03	1.93E-01	1.49E-02	-5.64E-01

Т

enefits and oads beyond he system oundaries

Table 15: Results indicators describing resource use. waste categories. and output flows per unit of product

Indicator	Acronym [Unit]	Value
Renewable primary energy (without raw material)	PERE [MJ]	5.92E+03
Renewable primary energy (raw material)	PERM [MJ]	5.97E+00
Total use of renewable primary energy	PERT [MJ]	5.93E+03
Non-renewable primary energy (without raw material)	PENRE [MJ]	9.99E+03
Non-renewable primary energy (raw material)	PENRM [MJ]	2.15E+01
Total use of non-renewable primary energy	PENRT [MJ]	1.00E+04
Use of secondary materials	SM [kg]	8.04E-01
Use of renewable secondary fuels	RSF [MJ]	0.00E+00
Use of non-renewable secondary fuels	NRSF [MJ]	0.00E+00
Net use of fresh water	FW [m3]	1.08E+02
Hazardous waste disposed	HWD [kg]	3.34E-07
Non-hazardous waste disposed	NHWD [kg]	8.01E+00
Radioactive waste disposed	RWD [kg]	1.57E+00
Components for reuse	CRU [kg]	0.00E+00
Materials for recycling	MFR [kg]	6.97E-01
Materials for energy recovery	MER [kg]	7.39E-01
Exported electricity	EEE [MJ]	2.85E+00
Exported thermal energy	EET [MJ]	6.43E+00
Biogenic carbon content of the product	Biog. C in product [kg]	0.00E+00
Biogenic carbon content of the associated packaging	Biog. C in packaging [kg]	1.43E-01

5 Extrapolation

5.1 Extrapolation rules

Extrapolations rules have been calculated following PCR-ed4-EN-2021 09 14 and PSR-0014-ed2.0- EN-2023 07 18. The defined rules shall be applied using the Extrapolation rules file provided in the following tables.

Parameter	Value for reference product (DP HE DA 1200 P 29W 865 IP65)
Lighting output [Im]	4,640
Weight of light source [kg]	0.079
Weight of luminaire structure [kg]	1.191
Weight of control gear [kg]	0.157
Weight of light management system [kg]	N/A
Weight of packaging [kg]	0.332
Power [W]	29
Length [mm]	1,500
Height [mm]	68
Width [mm]	82

Table 16: Extrapolation parameters for reference product

The extrapolation coefficients calculation at the functional unit level shall be taken into account with the following formula:

Extrapolation coefficent at the product level $\times \frac{\text{Lighting output of reference product (lm)}}{\text{Lighting output of concerned product (lm)}}$

5.2 Extrapolation coefficients

The reported extrapolation coefficients are intended at product level (declared unit) and not at functional unit.

- Some products within the product family are dimmable and it operates with a DALI driver, which is capable of communicating with an external Light Management System, their energy saving coefficient is 0.5.
- The rest of the products that do not have any sensors or light management functions are assigned with an energy saving coefficient of 1.0.

Table 17: Calculated Extrapolation coefficients per product

Product Name	Useful output flux [lm]	Manufac- turing	Distribu- tion	Installa- tion	Use	EoL
DP HE DA 1200 P 29W 865 IP65	4,640	1.00	1.00	1.00	1.00	1.00
DP HE 1200 P 29W ML 840 IP65	4,640	0.97	0.97	1.00	2.00	0.97
DP HE 1200 P 29W ML 865 IP65	4,640	0.98	0.98	1.00	2.00	0.97
DP HE 1500 P 40W ML 840 IP65	6,400	1.14	1.13	1.08	2.76	1.15
DP HE 1500 P 40W ML 865 IP65	6,400	1.14	1.13	1.08	2.76	1.15
DP HE 1500 P 73W ML 840 IP65	11,680	1.15	1.15	1.08	5.03	1.17
DP HE 1500 P 73W ML 865 IP65	11,680	1.15	1.15	1.08	5.03	1.17
DP HE 5TH 1200 P 29W ML 840 IP65	4,640	1.09	1.09	1.00	2.00	1.11
DP HE 5TH 1200 P 29W ML 865 IP65	4,640	1.09	1.09	1.00	2.00	1.11
DP HE 5TH 1500 P 40W ML 840 IP65	6,400	1.28	1.26	1.08	2.76	1.30
DP HE 5TH 1500 P 40W ML 865 IP65	6,400	1.28	1.26	1.08	2.76	1.30
DP HE 5TH 1500 P 73W ML 840 IP65	11,680	1.28	1.28	1.08	5.03	1.32
DP HE 5TH 1500 P 73W ML 865 IP65	11,680	1.28	1.28	1.08	5.03	1.32
DP HE DA 1200 P 29W 840 IP65	4,640	1.00	1.00	1.00	1.00	1.00
DP HE DA 1500 P 23W 840 IP65	3,680	1.14	1.14	1.08	0.79	1.15
DP HE DA 1500 P 23W 865 IP65	3,680	1.14	1.14	1.08	0.79	1.15
DP HE DA 1500 P 40W 840 IP65	6,400	1.14	1.14	1.08	1.38	1.15
DP HE DA 1500 P 40W 865 IP65	6,400	1.14	1.14	1.08	1.38	1.15
DP HE DA 1500 P 49W 840 IP65	7,840	1.14	1.14	1.08	1.69	1.15
DP HE DA 1500 P 49W 865 IP65	7,840	1.14	1.14	1.08	1.69	1.15